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ABSTRACT: The incidence of sepsis and its attendant mortality risk are significantly increased with aging.  

Thus, severe sepsis in the elderly is likely to become an emerging concern in critical care units.  Cardiac 

dysfunction is an important component of multi-organ failure after sepsis.  In our laboratory, utilizing a 

pneumonia-related sepsis animal model, our research has been focused on the mechanisms underlying sepsis-

induced cardiac failure.  In this review, based on findings from others and ours, we discussed age-dependent 

decay in mitochondria and the role of mitochondrial reactive oxygen species (mtROS) in sepsis-induced 

cardiac inflammation and autophagy.  Our recent discovery of a potential signal transduction pathway that 

triggers myocardial mitochondrial damage is also discussed.  Because of the significance of mitochondria 

damage in the aging process and in sepsis pathogenesis, we hypothesize that specific enhancing mitochondrial 

antioxidant defense by mitochondria-targeted antioxidants (MTAs) may provide important therapeutic 

potential in treating elder sepsis patients.  In this review, we summarized the categories of currently published 

MTA molecules and the results of preclinical evaluation of MTAs in sepsis and aging models. 
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Sepsis in Older Patients  
 

Severe sepsis, defined by the presence of acute organ 

dysfunction, is the leading cause of death in intensive care 

units (ICUs) [1, 2] and the tenth leading cause of death 

overall in the US[3].  Despite improvements in antibiotic 

therapies and critical care techniques[4], approximately 

215,000 Americans still die from sepsis each year [5].   

 In recent years, the number of older patients being 

admitted to ICUs has increased significantly [6].  Elderly 

patients, age over 65-year-old, account for about 60% of 

severe sepsis cases [7].  Increased incident in sepsis is 

20% more in the elder population compared to younger 

counterparts [8], and the mortality rates of severe sepsis 

increase dramatically with aging [9].  In addition, among 

sepsis survivors, substantial and persistent cognitive 

impairment and functional disability are found to 

associate with aging, reported by a recent nationally 

prospective cohort study [10].  Such consequence will 

unavoidably result in a significant increase in the overall 

health burden of sepsis.  The growth in the number of 

older sepsis patients can be explained by a decline in 

mortality rates that lead to increased life expectancy due 

to advances in modern medicine.  It is expected that the 

population of elderly will grow more rapidly than any 

other age groups in the near future.  Thus, the care for 

older patients present an emerging challenge for the 

clinical management of sepsis. 

 A number of aging-associated risk factors need to be 

considered when dealing with the treatment of elder sepsis 

patients.  One major factor is age-related decline in 

immunity [11].  In elderly population, functions of T- and 
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B- cells are defective [12, 13], notably by the loss of T- 

and B- cell repertoire [13, 14].  However, the elements of 

innate immunity, such as neutrophils, monocytes, 

macrophages, natural killer cells and dendritic cells, are 

well preserved [15-17].  Meanwhile, the cytokine 

expression is highly viable [18, 19], and the induction of 

pro-inflammatory cytokines takes prolonged period, 

reflecting progressive difficulties to meet the need of 

clearing microbial pathogens [20]. Because 

overwhelming inflammation is a characteristic response 

in sepsis, age-related immune deficiencies render the 

older patients at excess risk for the progression to severe 

sepsis after infection and acute injuries. Another 

physiological change in older patients that can not be 

ignored is the decline of nutrition status, which is caused 

by a number of reasons, including age-associated decrease 

of olfactory sensation, inactivity, social isolation, 

depression, poor dentition and chronic disease conditions 

[21].  In addition, pre-existing chronic comorbid medical 

conditions, such as HIV, cancer, diabetes and obesity, 

increase critical risk for older sepsis patients.  Further, 

pre-admission functional status has been found to be an 

independent predictor for outcomes in older patients [22, 

23].  Poor functional status is probably caused by disuse 

atrophy, lose of responsiveness to tropical hormones, 

neurological alterations and decrease in metabolism and 

dietary intake.  Together, the deteriorated heath conditions 

are responsible for weakening an already compromised 

immune defense in the elderly.   

 

Mitochondrial Damage and Aging Hearts 

 

Mitochondrial dysfunction is a major focus in the study of 

aging process.  The free radial theory of aging proposed 

by Harman half century ago suggests that aging is a result 

of deleterious effects of accumulation of harmful reactive 

oxygen species (ROS) [24].  Multiple intracellular sites 

produce ROS, such as xanthine oxidase in cytosol [25], 

NADPH oxidase at membrane [26] and lipid oxidation in 

peroxisomes [27].  However, the majority of oxidative 

stress burden comes from mitochondria, where ROS are 

generated as by products during oxidative phosphory-

lation and ATP production [28]. Scavenging of 

mitochondrial ROS (mtROS) is achieved via enzymatic 

and non-enzymatic antioxidants.  Mitochondrial 

antioxidant enzymes consist of glutathione peroxidase 

(GPx), catalase (CAT) and manganese superoxide 

dismutase (MnSOD) [29-31].  An imbalance between 

mtROS production and scavenging leads to accumulation 

of mtROS, which disrupt the function of mitochondrial 

proteins, lipids, and DNA through structural 
modifications and therefore alter multiple aspects of 

mitochondrial function [32, 33].  As an extension to the 

free radical theory, it is proposed that mtROS are the main 

cause of functional deficiencies associated with aging 

[34].   

However, to date, the correlation between ROS and 

aging still remains controversial, since published studies 

have provided evidence in both supporting and against the 

free radical theory of aging.  For example, in yeast, 

deletion of three mitochondrial antioxidant genes, SOD1 

(Cu, Zn superoxide dismutase, CuZnSOD), SOD2 

(manganese superoxide dismutase, MnSOD) and CCS1 

(Copper chaperone), shortened the life span enormously, 

suggesting the importance of antioxidant defense in 

maintaining longevity [35]. Consistently, in 

Caenorhabditis elegans, giving the wild-type worms 

small synthetic SOD or catalase mimetics extended their 

life span by a mean of 44% [36].  It was further shown in 

mice that mitochondria-specific overexpression of human 

catalase (mCAT mice) attenuated age-associated 

mitochondrial dysfunction [37], reduced oxidative 

damage and significantly increased life span [38].  

However, on the contrary, in a transgenic mouse study, 

overexpression of cytosolic CuZnSOD, catalase, or 

combinations of either CuZnSOD and catalase, or 

CuZnSOD and MnSOD failed to provide any longevity 

benefit [39].  Also, in the yeast study mentioned above, 

deletion of the other known mitochondrial antioxidant 

genes (TTR1, CCD1, GLO4, TRR2, TRX3, GRX5, PRX1) 

had little effect on life span [35].  In according with this, 

antioxidant supplements so far tested in human did not 

provide any beneficial effect over a well-balanced diet 

[40].  Thus, it appears that ROS are not the sole 

determinant factor but may provide significant impetus to 

the aging process.  Accumulating evidence has indicated 

the importance of reducing mitochondrial ROS in life 

span and cardiac health benefits. 

In the heart, mitochondria comprise about 30% of 

myocardial volume [41].  Thus, the heart is especially 

prone to mitochondrial oxidative stress.  Studies suggest 

that age-dependent cardiac mitochondrial damage is 

caused by over production of mtROS [42, 43].  It was 

shown that, in mCAT mice, mitochondria-specific 

overexpression of human catalase provided resistance to 

heart failure induced by pressure overload [44], 

angiotensin II and Galphaq overexpression [45].  These 

transgenic mice exhibited improved cardiac performance 

and decreased age-associated cardiac pathology, such as 

ventricular fibrosis, and enlargement of myocardial fiber 

size [46].  Consistently, over expression of another 

mitochondrial antioxidant enzyme, manganese 

superoxide dismutase (MnSOD), protected cardiac 

morphology and normalized contractility of 

cardiomyocytes in a type 1 diabetes model [47].  In 
addition, gene knockout of MnSOD impaired left 

ventricular functions and promoted heart hypertrophy 

with accompanying fibrosis and necrosis [48].  Taken all 
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together, studies from these transgenic and gene knockout 

animal models have provided direct evidence to support 

the critical role of mtROS in cardiac dysfunction and 

aging.  These investigations also suggest that targeted 

defense against mtROS may become an effective 

therapeutic strategy in dealing with age-associated cardiac 

malfunction. 

 

Mitochondrial Damage in Septic Hearts 

 

Cardiac dysfunction is a vital component of sepsis-

associated multi-organ failure [49-51].  Severe sepsis 

patients with cardiac dysfunction have significantly 

higher mortality compared with patients without this 

condition (70 vs. 20%) [52, 53].  Clinically, the degree of 

mitochondrial dysfunction is tightly linked to sepsis 

outcomes [54, 55].  Since heart is a mitochondria-rich 

organ, the role of mitochondrial damage in sepsis-induced 

cardiac failure has been receiving a significant attention. 

Current studies suggest that multiple aspects of 

mitochondrial dysfunction, such as impaired metabolism, 

altered energy generation, and elevated production of 

mtROS, contribute to sepsis-induced heart failure [56-58].   

 

Mitochondria and cardiac inflammation 

 

Excessive inflammation is a characteristic response 

during sepsis and a major cause of organ failure, such as 

in the heart.  Inflammation is triggered not only by 

pathogen-associated molecular patterns (PAMPs), 

presented by foreign pathogens, but also by danger-

associated molecular patterns (DAMPs), formed by 

endogenous molecules released from damaged tissues 

[59-61].  Immune cells recognize PAMPs and DAMPs via 

four families of pattern recognition receptors (PRRs), 

including Toll-like receptors (TLRs), nucleotide-

oligomerization domain (NOD)-like receptors (NLRs), 

cytoplasmic caspase-recruiting domain (CARD) helicases 

such as RIG-I/MDA5 [59, 62, 63], and C-type lectin 

receptors (specific expression on dendritic and myeloid 

cells[64, 65]).  Downstream inflammatory responses are 

activated through signalosome pathway, in which NF-

κB kinase (IKK) 

signalosome pathway[66, 67], and/or through 

inflammasome pathway, in which inflammatory caspase 

1 and 5 are controlled by the inflammasomes [68-70].   

 Studies in recent years revealed that a significant 

amount of DAMPs are generated from mitochondria.  The 

list of mitochondria-derived DAMPs includes mtROS, 

mitochondrial DNA (mtDNA) fragments [71], N-formyl 

peptides [72-74], ATP [75, 76] and cytochrome C [61, 
77].  These molecules are released from broken 

mitochondria into circulating system during cell death and 

organ injury, initiating inflammatory responses through 

multifactorial pathways. For example, circulating mtDNA 

fragments isolated from the plasma from trauma patients 

are capable to trigger peripheral inflammation in animal 

models [78, 79].  In macrophages, mtROS are essential 

components for the activation of inflammasome NLRP3 

[80].  Mitochondrial matrix protein MAVS is part of the 

mitoxosome to activate NF-B during antiviral responses 

[81]. These mitochondria-involved mechanisms are most 

likely all related to mtROS over production, since mtROS 

cause mitochondrial functional deficiency and structural 

rapture via direct oxidation [82, 83], and thus release 

mitochondrial molecules into cytoplasm or the circulating 

system. 

 A similar paradigm may be applicable to cardiac 

inflammation during sepsis.  Certain PRRs, receptors to 

PAMPs and DAMPs, are identified in the heart tissue or 

cardiomyocytes [84-86]. In animal models, 

pharmacological inhibition of caspase 1 [87] or small 

interfering RNA (siRNA) blockage of NF-B expression 

[88] prevented heart failure, attributing the activation of 

both signalosome and inflammasome pathways to sepsis-

mediated cardiac dysfunction.  Studies from others and 

ours suggest that mitochondrial signaling indeed plays a 

significant role in provoking inflammation in 

myocardium [89, 90].   

 Our laboratory previously developed a pneumonia-

related sepsis model in rats [91].  In this model, rats were 

infected with S. pneumoniae and sepsis symptoms were 

confirmed by positive blood cultures, pulmonary 

inflammation, lactic acidosis, and a fall in mean arterial 

blood pressure 24 hours post-infection [92-95].  Using this 

model, we demonstrated that sepsis impaired cardiac 

mitochondria, causing compromised membrane integrity, 

increased oxidative stress and decreased antioxidant 

defense [96].  Further, this sepsis-triggered mitochondrual 

damage occurred prior to cardiac inflammatory responses 

such as cytokine productions and NF-B activation [96].  

Infiltration of neutrophil [89], accumulation of mtDNA 

fragments and ASC (apoptosis-associated speck-

like protein containing a carboxy-terminal CARD), an 

inflammasome component (unpublished results), were 

also observed in septic myocardium. We further showed 

that specific suppression of mtROS protected cardiac 

mitochondria, attenuated inflammation and improved 

heart function in the same sepsis animal model [89].  We 

hypothesisze that sepsis-induced mtROS and 

inflammation in myocardium are linked through a 

positive feedback-signaling network.  In this scenario, in 

response to septic challenge, mtROS participate in 

inciting inflammation that further triggers additional 

increases of mitochondrial damage and mtROS 
overproduction, leading to downstream exacerbation of 

inflammatory responses.  In fact, myocardial mtROS 

increase and mitochondrial damage induced through 
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inflammatory mediators have been previously reported 

using sepsis [97] and non-sepsis models [98].  Thus, 

specific targeting mtROS, such as using mitochondria-

targeted antioxidants, in early sepsis stage may have a 

therapeutic potential to control the progression of 

mitochondrial dysfunction and inflammation in later 

severe sepsis stage.   

 

Mitochondria and cardiac autophagy 

 

Increase in autophagy, a lysosome-dependent mechanism 

of removing damaged proteins and organelles [99], 

associates with failing hearts[100-104].  Autophagy 

cascade is initiated by Beclin-1 (autophagy-regulated 

gene 6) [105], which forms complex with class III 

phosphoinositide 3-kinase (PI3K) to promote the 

formation of autophagosomes.  After subsequent fusion 

with lysosomes, the materials inside autophagosomes are 

degraded [106, 107].  Autophagy is either protective or 

detrimental to myocardium, depending on varying disease 

conditions [101, 104, 108, 109].  It has been proposed that, 

under physiological responses or mild stress, autophagy 

provides cellular quality control to promote survival and 

is therefore adaptive.  However, under severe or chronic 

stress, excessive or inadequate autophagy causes massive 

self-degradation or accumulation of toxic materials; both 

are maladaptive and eventually provoke cell death [110, 

111].   

 As mentioned earlier, mitochondrial oxidative stress 

burden increases along with aging.  Effective removal of 

damaged mitochondria and unwanted mitochondrial 

molecules is essential for maintaining a healthy heart.  

However, recent studies strongly indicate an age-

associated impairment of cardiac autophagy [112, 113].  

One possible factor for this autophagy deficiency lies in 

the enlargement of mitochondria.  It was shown that 

mitochondria in aged cells are often enlarged, showing 

structural changes such as swelling, loss of cristae, and/or 

almost complete damage of mitochondrial components 

[114, 115].  A recent in vitro study in cultured neonatal 

cardiomyocytes suggests that autophagic turnover of 

small mitochondria is more efficient than that of the large 

ones[116].  Further, disruption of lysosomal function is 

another factor contributing to the slow-down autophagy 

in the aged hearts [117-119].  As a result of autophagy 

deficiency, aged hearts unavoidably accumulate damaged 

mitochondria, mtROS and other mitochondria-derived 

DAMPs molecules, which increase the heart vulnerability 

to deteriorative inflammatory and autophagic responses 

under trauma and sepsis conditions. 

 In sepsis, increase in autophagy has been detected in 
multiple organs, including the heart, in animal models and 

in clinical samples [56, 120-123]. However, the 

mechanism(s) underling its occurrence remains unclear.  

Function of mtROS in induction of autophagy has been 

suggested by studies from other disease conditions.  For 

example, in a hypertensive cardiomyopathy model, 

angiotensin II-provoked autophagy was inhibited by 

overexpression of mitochondria-targeted antioxidant 

enzyme catalase [45].  In Hela cells, starvation-induced 

autophagy was decreased when mtROS failed to increase 

[124].  On the other hand, evidence also indicates that 

autophagy exerts a control over mtROS levels, since 

autophagy is often initiated in order to remove toxic 

molecules, including mtROS, under certain stress 

conditions [125, 126]. In our current preliminary 

investigation, we obtained data suggesting that mtROS 

may have a stimulatory role in sepsis-induced autophagic 

responses in the heart, and we hypothesize that, in septic 

hearts, imbalanced overproduction of mtROS starts an 

autophagy-promoting feed-forward pathway that leads to 

pathological progressions.  

 Current knowledge with regards to the role of cardiac 

autophagy in sepsis outcomes, adaptive or maladaptive, is 

still limited and inconclusive.  In septic hearts, 

pharmacological activation of autophagy in mouse CLP 

model [127] or in cultured cardiomyocytes [128] suggests 

that stimulating autophagy is protective to myocardium, 

and thus autophagy is an adaptive response.  However, a 

recent publication showed that reducing autophagy by an 

autophagy inhibitor or antioxidants improves cardiac 

contractility in a mouse lipopolysaccharide (LPS)-

induced sepsis model [129], suggesting cardiac autophagy 

as a maladaptive response.  The discrepancy of these 

observations is probably caused by the differences in the 

level of autophagy, the severity of sepsis and the timing 

of drug administration in individual experimental settings.  

Future investigations using autophagy transgenic and 

knockout models are needed to address the role of 

autophagy in septic hearts.  So far, autophagy status in 

older sepsis patients remains unclear.  Detailed analysis of 

cardiac autophagy in aging animal models in response to 

sepsis challenge will help us to understand the 

pathological conditions in aging septic hearts, assisting 

further improvement on therapeutic strategies to combat 

cardiac failure in elder sepsis patients. 

 

Signal transduction of cardiac mitochondrial damage in 

sepsis 

 

To date, little is known about the intracellular signal 

transduction pathway(s) that triggers mitochondrial 

damage in the heart after sepsis.  Recent investigation 

from our laboratory suggests that sepsis alters 

mitochondrial translocation of tyrosine kinase cSrc and 
phosphatase SHP2, which may stimulate mitochondrial 

dysfunction and mtROS production in myocardium[130].   

 

http://en.wikipedia.org/wiki/Phosphoinositide_3-kinase
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During the past several years, a growing body of 

evidence has suggested that certain well-known 

intracellular signaling molecules, such Src-family 

tyrosine kinases [131], tyrosine phosphatases PTP-1B and 

SHP2 [132], and serine/threonine kinases, protein kinase 

C (PKC) [133, 134] and extracellular-signal-regulated 

kinases (ERK) [135, 136], also provide important 

functions inside mitochondria.  Their intra-mitochondria 

localization was verified using immune electron 

microscopy [131, 135, 137] and western blot analysis 

[131, 132].  However, since these molecules do not 

possess mitochondria-sorting peptide, the mechanism of 

their mitochondrial translocation has not been understood 

yet.  In mitochondria, these kinases and phosphatases may 

play an important part in control of mitochondrial 

function and structure through reversible phosphorylation 

and dephosphorylation [132, 136, 138, 139].   Proteomic 

analysis of healthy mitochondria from rat brains [140] and 

from mouse hearts [141] captured phosphorylation sites 

on critical enzymes of mitochondria metabolism, 

membrane components and biosynthesis molecules.  

Some key components of oxidative phosphorylation 

(OXPHOS) complexes, such as subunits of NADH-

coenzyme Q oxidoreductase (complex I) [142, 143], 

subunit IV of cytochrome c oxidase (complex IV) [144] 

and subunit ∂ of F0F1-ATP synthase (complex V) [145], 

have been identified as targets of phosphorylation.  In 

addition to this category, other mitochondrial functional 

proteins, such as adenine nucleotide translocator 1 

(ANT1)[138], aconitase [146] and telomerase reverse 

transcriptase (TERT)[147], were also shown regulated via 

tyrosine phosphorylation and dephosphorylation.  It is 

noteworthy to point out that, since mtROS are generated 

from the reactions of OXPHOS complexes [148], changes 

in mitochondrial-localized kinases and phosphotases will 

inevitably affect the production levels of mtROS. 

In a pneumonia-related sepsis animal model, we 

found that a significant decrease in mitochondrial Src and 

an increase in mitochondrial SHP2 in myocardium were 

directly associated with sepsis [130].  Correlated with 

these changes, tyrosine phosphorylation of mitochondrial 

proteins, including some essential structural and 

functional proteins, was dramatically reduced.  Both in 

vitro biochemical analysis and in vivo animal study 

suggest that OXPHOS complex I and III contain putative 

substrates of Src and SHP2 [130], consistent with previous 

findings using small molecule inhibitors that implicated 

Src family kinases and SHP2 phosphatase as main 

regulators of tyrosine phosphorylation in mitochondria 

[132, 149, 150].  We hypothesize that, during sepsis, 

certain receptors of pathogen-associated molecular 
patterns (PAMPs) and/or danger-associated molecular 

patterns (DAMPs) alter mitochondrial translocation of Src 

and SHP2 in myocardium.  The resulted changes in 

tyrosine phosphorylation of mitochondrial proteins 

produce functional deficiency and mtROS 

overproduction, and thus damaged mitochondria further 

generate more DAMPs to aggravate inflammatory 

responses and organ dysfunction [71].  However, several 

aspects need to be further addressed to support this 

hypothesis.  Mitochondrial substrates of Src and SHP2 

remain to be defined, and the upstream receptor(s) that 

regulates mitochondrial translocation of Src and SHP2 

awaits to be identified.  Furthermore, whether alteration 

of mitochondrial Src and SHP2 relates to the production 

of mitochondrial-derived DAMPs to stimulate 

inflammation and how this signaling pathway affects 

cardiomyocyte function deserve further elucidation. 

Current studies started to reveal some evidence that 

correlates the changes in reversible protein 

phosphorylation/dephosphorylation inside mitochondria 

with aging.  For example, intra-mitochondrial AMP-

activated protein kinase (AMPK) activity decreased with 

age, contributing to reduced mitochondrial biogenesis 

[151, 152].  Mitochondrial translocation of p66-Shc, an 

adaptor protein to tyrosine kinase receptors, stimulates 

mtROS production and regulates longevity in mice [153, 

154].  Given the important role of kinases and 

phosphatase in the regulation of mitochondrial function, 

future research to understand the kinases and 

phosphatases events inside mitochondria will promote the 

understanding of pathogenesis in the heart of older sepsis 

patients.  Research in this area will also help to identify 

new therapeutic targets to control cardiac dysfunction. 

 

Therapeutic Approaches Targeting mtROS 

 

For a long time, oxidative stress has been well recognized 

as a major promoter in sepsis pathogenesis [155, 156], and 

antioxidants are expected to attenuate inflammation and 

improve survival following sepsis.  However, although 

this expectation has been met in animal sepsis models 

[157, 158], clinical trials of antioxidant therapies have led 

to inconsistent results [159-161].  One limitation of the 

conventional antioxidants is that they are globally acting 

agents, and insufficient dosage and/or lower efficacy are 

very likely to be the reasons for the failures [162].  

 Because ROS are mainly generated via mitochondrial 

respiration, mitochondria themselves are thought to be the 

primary target of oxidative damage. Targeting antioxidant 

defense specifically in mitochondria has been expected to 

provide more effective mitochondrial protection.  

Accordingly, strategies for mitochondria-targeted 

delivery of antioxidants are being developed [163-170].  

One such approach covalently links bio-molecules to 
lipophilic triphenylphosphonium cation (TPP+).  Due to a 

positive charge, the molecules are driven by the 

mitochondrial membrane potential to accumulate solely in 
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mitochondria [167-169].  Another group of targeted 

antioxidants, Szeto-Schiller (SS)-peptides, are small 

positively charged peptides that accumulate in 

mitochondria independent of membrane potential[164, 

170].  These novel mitochondria-targeted antioxidants 

(MTAs) have demonstrated their higher capability in 

various experimental settings to fight oxidative stress and 

to protect mitochondrial function [171-174].   

 Currently, MTAs have not yet been applied clinically.  

A clinical trial of mitochondrial-targeted ubiquinone 

(MitoQ) showed its benefit in treating liver inflammation 

[175], and a phase IIb human trial has been initiated in the 

U.K. to assess the efficacy of MitoQ in non-alcoholic fatty 

liver disease[176].  To date, the therapeutic potential of 

MTAs is under intense investigation using pre-clinical 

models of mitochondrial abnormalities-associated 

diseases such as neurodegenerative diseases [177, 178], 

cardiac dysfunction[179], cardiac ischemia-reperfusion 

injury [163], hypertension [180], diabetes [181], and 

sepsis [182, 183]. 

 In sepsis animal models, MitoQ showed its 

therapeutic benefits in the improvement of cardiac 

function and prevention of liver damage [182, 183].   In a 

recent published study, we compared the effects of Mito-

Vit-E with untargeted vitamin E in the rat pneumonia-

related sepsis model [89].  Both types of antioxidants 

exhibited significant inhibition on peripheral and cardiac 

inflammation.  At the same dose, Mito-Vit-E provided 

higher efficacy to reduce cytokine production and to 

impede neutrophil infiltration in myocardium.  This 

advantage of Mito-Vit-E over vitamin E is likely caused 

by the fact that vitamin E is distributed globally and its 

protection of mitochondria against oxidative damage is 

less efficient, especially in mitochondria-enriched organs 

such as the heart.  Further study of MTAs effects using 

different sepsis models will allow us to recommend 

possible candidate molecules for clinical studies and 

promote translating the application of these novel 

antioxidants into significantly improved clinical 

outcomes.   

Studies of antioxidant SkQ1, TPP+-conjugated 

plastoquinone [184], in animal models have revealed 

certain evidence to support using MTAs as an anti-aging 

approach.  This compound reversed aging-dependent 

behavioral trait in rats after a ten-week-treatment[185].  In 

mice with lifelong treatment, SkQ1 significantly reduced 

age-related changes of hematopoietic and mesenchymal 

progenitor cells [186].  SkQ1 also showed effect to 

prolong lifespan in Drosophila [187], mice and hamsters 

[188]. It has been suggested that supplementation with 

low doses MTAs is a promising intervention to achieve a 
healthy aging.  However, evidence from both pre-clinical 

and clinical research is needed to support this hypothesis. 

 

Conclusion 
 

Sepsis represents as a major threat in critical care units.  

Treatment for this deadly condition remains to be 

supportive care such as using intravenous fluids and 

oxygen [4].  Most current attempts of molecular target-

based treatments have failed clinically [162, 189].  Even 

though older patients account nearly two third of severe 

sepsis cases [7], elderly population is likely to be excluded 

when new anti-sepsis and anti-microbial agents are tested 

in clinical trials.  It is now realized that aging-associated 

decay in mitochondrial function and overproduction of 

mitochondrial oxidative stress are key elements to cause 

deficiencies in inflammation and autophagy, which are 

critical responses to trigger organ failure in severe sepsis 

stage.  We anticipate that protection of mitochondria by 

mitochondria-targeted antioxidants (MTAs) may provide 

an effective therapeutic strategy for sepsis patients, 

especially for the elderly.  Thus, future preclinical and 

clinical assessment of MTAs will have important 

translational implications to significantly impact patient 

care quality and clinical outcomes.  
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